Pressive strategies, late kidney Olumacostat glasaretil web Allograft loss remains a critical clinical challenge for long-term graft survival (1-3). Kidney allograft recipients, especially those receiving organs from deceased donors (DD), frequently suffer from slow deterioration of kidney function or chronic allograft dysfunction (CAD) (4, 5). As defined by Banff criteria, CAD remains a non-specific pathologic entity encompassing Leupeptin (hemisulfate) biological activity histological changes of interstitial fibrosis and tubular atrophy (IF/TA), glomerulosclerosis, splitting of glomerular capillary basement membranes and/or vascular intimal hyperplasia (6). The diagnosis of CAD is not specific, and suggests neither identifiable pathophysiologic mechanisms nor possible treatment options. However, defining CAD as an idiopathic and multifactorial entity has precluded more comprehensive attempts to develop cause-specific treatment strategies (7-9). Given the evidence for the role of cumulative burden of immunological and nonimmunological factors in late graft loss, this fact raises the question of whether calcineurin inhibitor toxicity (CNIT) is quantitatively an important cause of progressive allograft damage leading to CAD (1-3). Although there is clear evidence that calcineurin inhibitors (CNIs) are nephrotoxic, it contribution to late graft deterioration and CAD is unclear. Histological evaluation of allograft biopsies is the gold standard for diagnosis of CNIT. However, as consequence of the disparity between findings in recent publications (10, 11), it is reasonable to question the specificity of the histological lesions used to diagnose CNIT (12). Acute and chronic features of CNI nephrotoxicity are traditionally considered separately, but clinical and experimental data suggest a continuum exists between early, dose-dependent, and reversible nephrotoxicity and chronic, irreversible nephrotoxicity (13, 14). The early tubular and endothelial responses triggered during CNI exposure could signal structural alterations. Because CNI-induced nephrotoxicity is strongly suspected in many renal allografts, significantly contributing to IF/TA, and almost all patients treated with CNIs eventually experience toxic renal damage (15), better tests are needed to diagnose nephrotoxicity in its early stages. However, despite intensive research efforts (14, 16-19), no specific signatures revealing unique pathways associated with CNIT and no reliable tests are currently available that can accurately and specifically diagnose CNI nephrotoxicity. Therefore, in the present study, a multiple step approach was used for: 1) identifying specific CNIT molecular signatures/pathways that associate with allograft injury (cross-sectional study), and 2) evaluating the contribution of the discovered CNIT signature in the progression to CAD with IF/TA (longitudinal study).Am J Transplant. Author manuscript; available in PMC 2015 May 01.Maluf et al.PageMaterial and MethodsEnrolled Population The study included allograft biopsies from DD kidney recipients transplanted and evaluated at Virginia Commonwealth University and at the University of Virginia. Written informed consent was obtained from all patients after Institutional Review Board approval (VCU#HM11454, UVA#14849). No living donors, HIV positive or re-transplant patients were included. Patients between the ages of 21 and 70 were enrolled. Protocol kidney biopsies were performed in all the patients at 3- and at 12-months post-KT. Allograft tissue was obtained and placed in RNAlat.Pressive strategies, late kidney allograft loss remains a critical clinical challenge for long-term graft survival (1-3). Kidney allograft recipients, especially those receiving organs from deceased donors (DD), frequently suffer from slow deterioration of kidney function or chronic allograft dysfunction (CAD) (4, 5). As defined by Banff criteria, CAD remains a non-specific pathologic entity encompassing histological changes of interstitial fibrosis and tubular atrophy (IF/TA), glomerulosclerosis, splitting of glomerular capillary basement membranes and/or vascular intimal hyperplasia (6). The diagnosis of CAD is not specific, and suggests neither identifiable pathophysiologic mechanisms nor possible treatment options. However, defining CAD as an idiopathic and multifactorial entity has precluded more comprehensive attempts to develop cause-specific treatment strategies (7-9). Given the evidence for the role of cumulative burden of immunological and nonimmunological factors in late graft loss, this fact raises the question of whether calcineurin inhibitor toxicity (CNIT) is quantitatively an important cause of progressive allograft damage leading to CAD (1-3). Although there is clear evidence that calcineurin inhibitors (CNIs) are nephrotoxic, it contribution to late graft deterioration and CAD is unclear. Histological evaluation of allograft biopsies is the gold standard for diagnosis of CNIT. However, as consequence of the disparity between findings in recent publications (10, 11), it is reasonable to question the specificity of the histological lesions used to diagnose CNIT (12). Acute and chronic features of CNI nephrotoxicity are traditionally considered separately, but clinical and experimental data suggest a continuum exists between early, dose-dependent, and reversible nephrotoxicity and chronic, irreversible nephrotoxicity (13, 14). The early tubular and endothelial responses triggered during CNI exposure could signal structural alterations. Because CNI-induced nephrotoxicity is strongly suspected in many renal allografts, significantly contributing to IF/TA, and almost all patients treated with CNIs eventually experience toxic renal damage (15), better tests are needed to diagnose nephrotoxicity in its early stages. However, despite intensive research efforts (14, 16-19), no specific signatures revealing unique pathways associated with CNIT and no reliable tests are currently available that can accurately and specifically diagnose CNI nephrotoxicity. Therefore, in the present study, a multiple step approach was used for: 1) identifying specific CNIT molecular signatures/pathways that associate with allograft injury (cross-sectional study), and 2) evaluating the contribution of the discovered CNIT signature in the progression to CAD with IF/TA (longitudinal study).Am J Transplant. Author manuscript; available in PMC 2015 May 01.Maluf et al.PageMaterial and MethodsEnrolled Population The study included allograft biopsies from DD kidney recipients transplanted and evaluated at Virginia Commonwealth University and at the University of Virginia. Written informed consent was obtained from all patients after Institutional Review Board approval (VCU#HM11454, UVA#14849). No living donors, HIV positive or re-transplant patients were included. Patients between the ages of 21 and 70 were enrolled. Protocol kidney biopsies were performed in all the patients at 3- and at 12-months post-KT. Allograft tissue was obtained and placed in RNAlat.
Related Posts
And NASH to a significant degree. Even though they were unable toAnd NASH to a
And NASH to a significant degree. Even though they were unable toAnd NASH to a considerable degree. Despite the fact that they have been unable to determine an improvement in fibrosis, their patients showed no progression of this damage. The precise mechanism of leptin action on fatty liver is still poorly understood. Leptin acts in […]
Bimolecular fluorescence complementation is a highly effective strategy for the detection of protein:protein interactions which could be homo- and/or hetero-dimeric in mother nature, like earlier scientific tests of cuticular lipid ABCG-type transporters in crops
The evident huge number of cells with zero fluorescence in the eYFP-ABCG2 panel (C) is a fluorescence artefact owing to interference from the YFP fluorescence of this construct. The graphs are consultant of .five independent experiments.ML241 (hydrochloride)Complementation of YFP-ABCG2 constructs happens at the plasma membrane. Constructs expressing fifty percent-tagged vYFP-ABCG2 independently (A, B) or alongside […]
Polycistronic pre-mRNA. The identified ESE at the E1E4 ORF promotes
Polycistronic pre-mRNA. The identified ESE in the E1E4 ORF promotes HPV18 9293434 splicing of each viral early and late pre-mRNAs and E1E4 production via interaction with SRSF3. This study offers significant observations on how option RNA splicing PubMed ID:http://www.ncbi.nlm.nih.gov/pubmed/19883162 of HPV18 pre-mRNAs is topic to regulation by viral RNA cis elements and host splicing factors […]