Ial virulent EGF816 proteins [38], predicting metalloproteinase family [39], predicting L-DOPS protein folding rate [40], predicting GABA(A) receptor proteins [41], predicting protein supersecondary structure [42], identifying protein quaternary structural attribute [43], predicting cyclin proteins [44], classifying amino acids [45], predicting enzyme family class [46], identifying risk type of human papillomaviruses [47], and discriminating outer membrane proteins [48], among many others (see a long list of references cited in [49]). Because it has been widely used, recently a powerful software called PseAAC-Builder [49] was proposed for generating various special modes of PseAAC, in addition to the web-server PseAAC [50] established in 2008. According to a recent review [34], the general form of PseAAC for a protein P can be formulated as P ?y1 y2 ?yu ?yV T ??Materials and Methods 1. Benchmark DatasetThe benchmark dataset Bench used in this study was taken from Verma et al. [2]. The dataset can be formulated asBenchz[{??where z contains 252 secretory proteins of malaria parasite, { contains S non-secretory proteins of malaria parasite, and the 252 symbol represents the union in the set theory. The same benchmark dataset was also used by Zuo and Li [4]. For reader’s convenience, the sequences of the 252 secretory proteins in z and those in { are given in Supporting Information S1.where T is a transpose operator, while the subscript V is an integer and its value as well as the components y1 , y2 , … will depend on how to extract the desired information from the amino acid sequence of P. The form of Eq.2 can cover almost all the various modes of PseAAC. Particularly, it can be used to reflect much more essential core features deeply hidden in complicated protein sequences, such as those for the functional domain (FunD) information [51,52,53] (cf. Eqs.9?0 of [34]), gene ontology (GO) information [54,55] (cf. Eqs.11?2 of [34]), and sequence evolution information [3] (cf. Eqs.13?4 of [34]). In 22948146 this study, we are to use a novel approach to define the V elements in Eq.2. As is well known, biology is a natural science with historic dimension. All biological species have developed starting out from a very limited number of ancestral species. It is true for protein sequence as well [56]. Their evolution involves changes of single residues, insertions and deletions of several residues [57], gene doubling, and gene fusion. With these changes accumulated for a long period of time, many similarities between initial and resultant amino acid sequences are gradually eliminated, but the corresponding proteins may still share many common attributes, such as having basically the same biological function and residing at a same subcellular location. To incorporate this kind of sequence evolution information into the PseAAC of Eq.2, let us use the information of the PSSM (Position-Specific Scoring Matrix) [3], as described below. According to [3], the sequence evolution information of protein P with L amino acid residues can be expressed by a 20|L matrix, as given by 2 6 P(0) 6 PSSM 6 m(0) 1,2,2. A Novel PseAAC Feature Vector by Incorporating Sequence Evolution Information via the Grey System TheoryTo develop a powerful predictor for a protein system, one of the keys is to formulate the protein samples with an effective mathematical expression that can truly reflect their intrinsic6 6 m(0)m(0) 1,2 m(0) 2,2 . . . m(0) L,? ?. . . ?. 6 . 4 . m(0) L,7 m(0) 7 2,20 7 7 .Ial virulent proteins [38], predicting metalloproteinase family [39], predicting protein folding rate [40], predicting GABA(A) receptor proteins [41], predicting protein supersecondary structure [42], identifying protein quaternary structural attribute [43], predicting cyclin proteins [44], classifying amino acids [45], predicting enzyme family class [46], identifying risk type of human papillomaviruses [47], and discriminating outer membrane proteins [48], among many others (see a long list of references cited in [49]). Because it has been widely used, recently a powerful software called PseAAC-Builder [49] was proposed for generating various special modes of PseAAC, in addition to the web-server PseAAC [50] established in 2008. According to a recent review [34], the general form of PseAAC for a protein P can be formulated as P ?y1 y2 ?yu ?yV T ??Materials and Methods 1. Benchmark DatasetThe benchmark dataset Bench used in this study was taken from Verma et al. [2]. The dataset can be formulated asBenchz[{??where z contains 252 secretory proteins of malaria parasite, { contains S non-secretory proteins of malaria parasite, and the 252 symbol represents the union in the set theory. The same benchmark dataset was also used by Zuo and Li [4]. For reader’s convenience, the sequences of the 252 secretory proteins in z and those in { are given in Supporting Information S1.where T is a transpose operator, while the subscript V is an integer and its value as well as the components y1 , y2 , … will depend on how to extract the desired information from the amino acid sequence of P. The form of Eq.2 can cover almost all the various modes of PseAAC. Particularly, it can be used to reflect much more essential core features deeply hidden in complicated protein sequences, such as those for the functional domain (FunD) information [51,52,53] (cf. Eqs.9?0 of [34]), gene ontology (GO) information [54,55] (cf. Eqs.11?2 of [34]), and sequence evolution information [3] (cf. Eqs.13?4 of [34]). In 22948146 this study, we are to use a novel approach to define the V elements in Eq.2. As is well known, biology is a natural science with historic dimension. All biological species have developed starting out from a very limited number of ancestral species. It is true for protein sequence as well [56]. Their evolution involves changes of single residues, insertions and deletions of several residues [57], gene doubling, and gene fusion. With these changes accumulated for a long period of time, many similarities between initial and resultant amino acid sequences are gradually eliminated, but the corresponding proteins may still share many common attributes, such as having basically the same biological function and residing at a same subcellular location. To incorporate this kind of sequence evolution information into the PseAAC of Eq.2, let us use the information of the PSSM (Position-Specific Scoring Matrix) [3], as described below. According to [3], the sequence evolution information of protein P with L amino acid residues can be expressed by a 20|L matrix, as given by 2 6 P(0) 6 PSSM 6 m(0) 1,2,2. A Novel PseAAC Feature Vector by Incorporating Sequence Evolution Information via the Grey System TheoryTo develop a powerful predictor for a protein system, one of the keys is to formulate the protein samples with an effective mathematical expression that can truly reflect their intrinsic6 6 m(0)m(0) 1,2 m(0) 2,2 . . . m(0) L,? ?. . . ?. 6 . 4 . m(0) L,7 m(0) 7 2,20 7 7 .
Related Posts
Ifferentiation. Briefly, cells were seeded in the 6-well very low attachment plate with erythroid medium
Ifferentiation. Briefly, cells were seeded in the 6-well very low attachment plate with erythroid medium [Stem-alpha AE base (Stem Cell Technologies) supplemented with human plasma five , Epo five U/ml, SCF 50 ng/mlPLOS One | plosone.orgHeterogeneity of CML-iPSCs Response to TKIeliminated by Ficoll gradient. Live cells have been plated on mitomycined OP9 in hematopoietic medium […]
Utilized in [62] show that in most situations VM and FM carry out
Applied in [62] show that in most conditions VM and FM perform significantly superior. Most applications of MDR are realized within a retrospective style. Therefore, situations are overrepresented and controls are underrepresented compared with the accurate population, resulting in an artificially higher prevalence. This raises the question irrespective of whether the MDR estimates of error […]
O 5 sections per animal on days 9 to ten just after therapy, have beenO
O 5 sections per animal on days 9 to ten just after therapy, have beenO 5 sections per animal on days 9 to 10 immediately after remedy, have been identified by their deep blue-purple staining and counted at 00 magnification beneath light microscopy. MC count was expressed because the variety of positive cells per mm2 […]