Mitic acid exhibit reduced glucose transporter expression, Title Loaded From File diminished glucose uptake and impairedG6P production, compared to normal b-cells [7]. Underlying this functional impairment there are multiple network disruptions including decreased HNF1A and FOXA2 nuclear localization, reduced transcription of the MGAT4A, GLUT1 and GLUT2 genes, and decreased abundance of plasma membrane-resident glucose transporters [7]. We verified that the model was able to capture all these experimental observations by simply perturbing the network at the level of HNF1A and FOXA2 translocation to the nucleus (Figure 3, red arrows). Introducing an inhibitory factor acting on these translocations produces, by itself, all the other observed alterations as well as the impairment of glucose transport. The complete model structure, parameter values and comparisons between model results and human experimental data are provided in the (Text S2), and are summarized in the Methods section. We also verified the model with glucose uptake measurements from normal b-cells co-cultured with LacNAc and (LacNAc)3 glycans [7] (Figure 4). These glycans compete with the GNT-4A-glycosylated glucose transporters for binding to b-cell lectins that promote cell surface residency, thereby resulting in reduced expression of Title Loaded From File GLUT-1 (75 of normal with LacNAc and 57 with (LacNAc)3) and GLUT-2 (80 and 48 , respectively). In healthy human b-cells, GLUT-1 is the predominantly expressed transporter; however, GLUT-2 is also expressed at lower level [7,12,24]. From these and other observations, we assumed that, in healthy human b-cells, ,80 of plasma membrane glucose transporters are GLUT-1 and ,20 are GLUT-2. Nevertheless, the higher value of Vmax ,healthy for GLUT2 means that a single molecule of GLUT-2 transports more glucose than a single molecule 18325633 of GLUT-1. Therefore, GLUT-2 accounts for the majority of glucose transport even if it is expressed at much lower levels than GLUT-1. Simulating glucose transporter expression in a b-cell from a T2D donor, by inhibiting HNF1A and FOXA2 translocation to the nucleus, without further modifications, we calculated that in disease conditions 92 of the glucose transporters present at the b-cell surface are GLUT-1 and 8 are GLUT-2. Thus, also in human T2D b-cells, GLUT-1 remains the most abundant transporter at plasma membrane.Modeling Glucose Transport in Pancreatic b-CellsFigure 3. Schematic representation of the processes included in the mathematical model. The six subsystems discussed in the text are highlighted and denoted by roman numbers. Thick blue arrows indicate activation of transcription by promoter binding and histone hyperacetylation, thin blue arrows activation only by promoter binding; red bars indicate an inhibitory effect on nuclear residency of transcription factors. ?symbol indicates degradation, hexagons the glycosylated forms of the proteins. Green arrows show the path of glucose entrance into the cell, its phosphorylation, and the ultimate activation of insulin secretion. doi:10.1371/journal.pone.0053130.gControl Point IdentificationThe full mathematical model provides a link between glucose transporter expression and specific intracellular biological components affecting their residency at the cell membrane. Thus, points of this regulatory network that are more sensitive targets of therapeutic intervention can be investigated to identify best strategies for restoring normal glucose transport and b-cell function.We used the.Mitic acid exhibit reduced glucose transporter expression, diminished glucose uptake and impairedG6P production, compared to normal b-cells [7]. Underlying this functional impairment there are multiple network disruptions including decreased HNF1A and FOXA2 nuclear localization, reduced transcription of the MGAT4A, GLUT1 and GLUT2 genes, and decreased abundance of plasma membrane-resident glucose transporters [7]. We verified that the model was able to capture all these experimental observations by simply perturbing the network at the level of HNF1A and FOXA2 translocation to the nucleus (Figure 3, red arrows). Introducing an inhibitory factor acting on these translocations produces, by itself, all the other observed alterations as well as the impairment of glucose transport. The complete model structure, parameter values and comparisons between model results and human experimental data are provided in the (Text S2), and are summarized in the Methods section. We also verified the model with glucose uptake measurements from normal b-cells co-cultured with LacNAc and (LacNAc)3 glycans [7] (Figure 4). These glycans compete with the GNT-4A-glycosylated glucose transporters for binding to b-cell lectins that promote cell surface residency, thereby resulting in reduced expression of GLUT-1 (75 of normal with LacNAc and 57 with (LacNAc)3) and GLUT-2 (80 and 48 , respectively). In healthy human b-cells, GLUT-1 is the predominantly expressed transporter; however, GLUT-2 is also expressed at lower level [7,12,24]. From these and other observations, we assumed that, in healthy human b-cells, ,80 of plasma membrane glucose transporters are GLUT-1 and ,20 are GLUT-2. Nevertheless, the higher value of Vmax ,healthy for GLUT2 means that a single molecule of GLUT-2 transports more glucose than a single molecule 18325633 of GLUT-1. Therefore, GLUT-2 accounts for the majority of glucose transport even if it is expressed at much lower levels than GLUT-1. Simulating glucose transporter expression in a b-cell from a T2D donor, by inhibiting HNF1A and FOXA2 translocation to the nucleus, without further modifications, we calculated that in disease conditions 92 of the glucose transporters present at the b-cell surface are GLUT-1 and 8 are GLUT-2. Thus, also in human T2D b-cells, GLUT-1 remains the most abundant transporter at plasma membrane.Modeling Glucose Transport in Pancreatic b-CellsFigure 3. Schematic representation of the processes included in the mathematical model. The six subsystems discussed in the text are highlighted and denoted by roman numbers. Thick blue arrows indicate activation of transcription by promoter binding and histone hyperacetylation, thin blue arrows activation only by promoter binding; red bars indicate an inhibitory effect on nuclear residency of transcription factors. ?symbol indicates degradation, hexagons the glycosylated forms of the proteins. Green arrows show the path of glucose entrance into the cell, its phosphorylation, and the ultimate activation of insulin secretion. doi:10.1371/journal.pone.0053130.gControl Point IdentificationThe full mathematical model provides a link between glucose transporter expression and specific intracellular biological components affecting their residency at the cell membrane. Thus, points of this regulatory network that are more sensitive targets of therapeutic intervention can be investigated to identify best strategies for restoring normal glucose transport and b-cell function.We used the.
Related Posts
Interlayer space and occasionally to the total disintegration in the packetsInterlayer space and sometimes to
Interlayer space and occasionally to the total disintegration in the packetsInterlayer space and sometimes to the comprehensive disintegration on the packets and total exfolia-Materials 2021, 14,14 ofAssuming the use of intercalated clay for the electrospinning method, it need to be borne in mind that the intercalation approach itself facilitates the homogenization of the filler inside […]
S which can be down-regulated by mutant Htt in the transcriptional level, amongst other possibilities
S which can be down-regulated by mutant Htt in the transcriptional level, amongst other possibilities suggested by the wide array of pathways identified as influenced by the 2aminobenzamides. On a final note, the getting of a sizable quantity of targets in the 106 probe or interacting proteins could potentially raise concern for the use of […]
SDS-PAGE on a 15 gel. The gel was dried and analyzed bySDS-PAGE on a
SDS-PAGE on a 15 gel. The gel was dried and analyzed bySDS-PAGE on a 15 gel. The gel was dried and analyzed by phosphorimaging.Results Endogenous Expression of Arylsulfatase K in Human Tissues– To confirm endogenous expression of human ARSK, we first analyzed its mRNA ranges. We looked for tissue-specific expression by RT-PCR of normalized cDNA […]